Application of Ozonation-Biodegradation Hybrid System for Polycyclic Aromatic Hydrocarbons Degradation

Author:

Olak-Kucharczyk Magdalena1ORCID,Festinger Natalia1ORCID,Smułek Wojciech2ORCID

Affiliation:

1. Łukasiewicz Research Network—Lodz Institute of Technology, Maria Skłodowska-Curie 19/27, 90-570 Lodz, Poland

2. Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-695 Poznan, Poland

Abstract

Creosote, a mixture of polycyclic aromatic hydrocarbons (PAHs), was and is a wood impregnate of widespread use. Over the years the accumulation of creosote PAHs in soils and freshwaters has increased, causing a threat to ecosystems. The combined ozonation-biodegradation process is proposed to improve the slow and inefficient biodegradation of creosote hydrocarbons. The impact of different ozonation methods on the biodegradation of model wastewater was evaluated. The biodegradation rate, the changes in chemical oxygen demand, and the total organic carbon concentration were measured in order to provide insight into the process. Moreover, the bacteria consortium activity was monitored during the biodegradation step of the process. The collected data confirmed the research hypothesis, which was that the hybrid method can improve biodegradation. The pre-ozonation followed by inoculation with a bacteria consortium resulted in a significant increase in the biodegradation rate. It allows for the shortening of the time required for the consortium to reach maximum degradation effectiveness and cell activity. Hence, the study gives an important and useful perspective for the decontamination of creosote-polluted ecosystems.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3