Four Decades of Laccase Research for Wastewater Treatment: Insights from Bibliometric Analysis

Author:

Puspita KanaORCID,Chiari WilliamsORCID,Abdulmadjid Syahrun N.ORCID,Idroes RinaldiORCID,Iqhrammullah MuhammadORCID

Abstract

Increasing trends of environmental pollution and emerging contaminants from anthropogenic activities have urged researchers to develop innovative strategies in wastewater management, including those using the biocatalyst laccase (EC 1.10.3.2). Laccase works effectively against a variety of substrates ranging from phenolic to non-phenolic compounds which only require molecular oxygen to be later reduced to H2O as the final product. In this study, we performed a bibliometric analysis on the metadata of literature acquired through the Scopus database (24 October 2022) with keyword combination “Laccase” AND “Pollutant” OR “Wastewater”. The included publications were filtered based on year of publication (1978–2022), types of articles (original research articles and review articles) and language (English). The metadata was then exported in a CSV (.csv) file and visualized on VosViewer software. A total of 1865 publications were identified, 90.9% of which were original research articles and the remaining 9.1% were review articles. Most of the authors were from China (n = 416; 22.3%) and India (n = 276; 14.79%). In the case of subject area, ‘Environmental Science’ emerged with the highest published documents (n = 1053; 56.46%). The identified papers mostly cover laccase activity in degrading pollutants, and chitosan, which can be exploited for the immobilization. We encourage more research on laccase-assisted wastewater treatment, especially in terms of collaborations among organizations.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3