Affiliation:
1. School of Physical Education and Sports, Beijing Normal University, Beijing 100875, China
2. Department of Physical Education, Peking University, Beijing 100871, China
Abstract
Background: By comparatively investigating the joints, muscles and bones of the lower extremity during two progressive motions in Bafa Wubu and normal walking, this paper aims to enrich the diversity of walking exercise and scientifically provide theoretical guidance for primary practitioners. The scientific training methods and technical characteristics of Bafa Wubu, as well as its contribution to comprehensive exercise of the lower extremities, are further explored. Methods: A total of eight professional athletes of Tai Chi at the national level were recruited. The kinetic parameters of the lower extremity were calculated using AnyBody 7.2 musculoskeletal modeling. Stress analysis of the iliac bone was performed using an ANSYS 19.2 workbench. Results: In Bafa Wubu, the ground reaction force during two progressive motions was significantly smaller than that noted during normal walking. During warding off with steps forward and laying with steps forward, the load at the three joints of the lower extremity was significantly smaller than that during normal walking in the frontal plane, but significantly greater than that noted during normal walking in the vertical axis. In addition, the lower limb joint torque was higher than that of normal walking in both progressive movements, and lower limb muscle activation was higher. The iliac bone loads during the two progressive motions were larger than those during normal walking, and the maximum loading point differed. Conclusions: This is the first study to demonstrate the biomechanical performance of Bafa Wubu in professional athletes of Tai Chi. Two progressive motions of Bafa Wubu require the lower extremity to be slowly controlled, thereby resulting in a smaller ground reaction force. In addition, the loads of the three joints at the lower extremity all increase in the vertical direction and decrease in the lateral direction, reducing the possibility of lateral injury to the joints. In addition, the two progressive motions significantly enhance the muscle strength of the plantar flexion muscles, dorsiflexor, and muscles around the thigh, and effectively stimulate the bones of the lower extremity. Therefore, progressive motion training contributes to improving the controlling and supporting capabilities of the lower extremities during normal walking.
Funder
National Key R&D Program of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health