Hypoxia Pathway in Osteoporosis: Laboratory Data for Clinical Prospects

Author:

Wang Jianping12,Zhao Bin12,Che Jingmin12,Shang Peng123ORCID

Affiliation:

1. School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China

2. Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China

3. Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China

Abstract

The hypoxia pathway not only regulates the organism to adapt to the special environment, such as short-term hypoxia in the plateau under normal physiological conditions, but also plays an important role in the occurrence and development of various diseases such as cancer, cardiovascular diseases, osteoporosis. Bone, as a special organ of the body, is in a relatively low oxygen environment, in which the expression of hypoxia-inducible factor (HIF)-related molecules maintains the necessary conditions for bone development. Osteoporosis disease with iron overload endangers individuals, families and society, and bone homeostasis disorder is linked to some extent with hypoxia pathway abnormality, so it is urgent to clarify the hypoxia pathway in osteoporosis to guide clinical medication efficiently. Based on this background, using the keywords “hypoxia/HIF, osteoporosis, osteoblasts, osteoclasts, osteocytes, iron/iron metabolism”, a matching search was carried out through the Pubmed and Web Of Science databases, then the papers related to this review were screened, summarized and sorted. This review summarizes the relationship and regulation between the hypoxia pathway and osteoporosis (also including osteoblasts, osteoclasts, osteocytes) by arranging the references on the latest research progress, introduces briefly the application of hyperbaric oxygen therapy in osteoporosis symptoms (mechanical stimulation induces skeletal response to hypoxic signal activation), hypoxic-related drugs used in iron accumulation/osteoporosis model study, and also puts forward the prospects of future research.

Funder

Science and Technology Planning Project of Science, Technology and Innovation Commission of Shenzhen Municipality of China

National Natural Science Foundation of China

Heye Health Technology Chong Ming Project

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3