Fast Capture and Efficient Removal of Bloom Algae Based on Improved Dielectrophoresis Process

Author:

Liu Jinxin,Jin Qinghao,Geng Junfeng,Xia Jianxin,Wu Yanhong,Chen Huiying

Abstract

A dielectrophoresis (DEP) method for direct capture and fast removal of Anabaena was established in this work. The factors affecting the removal efficiency of Anabaena were investigated systematically, leading to optimized experimental conditions and improved DEP process equipment. The experimental results showed that our improved DEP method could directly capture Anabaena in eutrophic water with much enhanced removal efficiency of Anabaena from high-concentration algal bloom-eutrophication-simulated solution. The removal rate could increase by more than 20% after applying DEP at 15 V compared with a pure filtration process. Moreover, the removal rate could increase from 38.76% to 80.18% in optimized experimental conditions (the initial concentration of 615 μg/L, a flow rate of 0.168 L/h, an AC voltage of 15 V, and frequency of 100 kHz). Optical microscopic images showed that the structure of the captured algae cells was intact, indicating that the DEP method could avoid the secondary pollution caused by the addition of reagents and the release of phycotoxins, providing a new practical method for emergent treatment of water bloom outbreaks.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3