Spatial Differentiation of PM2.5 Concentration and Analysis of Atmospheric Health Patterns in the Xiamen-Zhangzhou-QuanZhou Urban Agglomeration

Author:

Zeng Suiping1,Tian Jian23ORCID,Song Yuanzhen2,Zeng Jian2,Zhao Xiya1

Affiliation:

1. School of Architecture, Tianjin Chengjian University, Tianjin 300384, China

2. School of Architecture, Tianjin University, Tianjin 300072, China

3. School of Architecture and Urban Planning, Tongji University, Shanghai 200092, China

Abstract

Exploring the spatial differentiation of PM2.5 concentrations in typical urban agglomerations and analyzing their atmospheric health patterns are necessary for building high-quality urban agglomerations. Taking the Xiamen-Zhangzhou-Quanzhou urban agglomeration as an example, and based on exploratory data analysis and mathematical statistics, we explore the PM2.5 spatial distribution patterns and characteristics and use hierarchical analysis to construct an atmospheric health evaluation system consisting of exposure–response degree, regional vulnerability, and regional adaptation, and then identify the spatial differentiation characteristics and critical causes of the atmospheric health pattern. This study shows the following: (1) The average annual PM2.5 value of the area in 2020 was 19.16 μg/m3, which was lower than China’s mean annual quality concentration limit, and the overall performance was clean. (2) The spatial distribution patterns of the components of the atmospheric health evaluation system are different, with the overall cleanliness benefit showing a “north-central-south depression, the rest of the region is mixed,” the regional vulnerability showing a coastal to inland decay, and the regional adaptability showing a “high north, low south, high east, low west” spatial divergence pattern. (3) The high-value area of the air health pattern of the area is an “F-shaped” spatial distribution; the low-value area shows a pattern of “north-middle-south” peaks standing side by side. The assessment of health patterns in the aforementioned areas can provide theoretical references for pollution prevention and control and the construction of healthy cities.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3