The Dynamic Nexus of Fossil Energy Consumption, Temperature and Carbon Emissions: Evidence from Simultaneous Equation Model

Author:

Deng Chengtao1,Guo Zixin2,Huang Xiaoyue3,Shen Tao4ORCID

Affiliation:

1. Postdoctoral Workstation of Guangxi Rural Credit Union and Southwestern University of Finance and Economics, Nanning 530000, China

2. School of Business, Zhengzhou University, Zhengzhou 450001, China

3. School of Economics and Management, Nanning Normal University, Nanning 530001, China

4. The Institute for Sustainable Development, Macau University of Science and Technology, Macao 999078, China

Abstract

With the continuous increase in global fossil energy consumption, carbon dioxide emissions and the greenhouse effect have gradually increased. This study uses a simultaneous equations model to explore the dynamic nexus of fossil energy consumption, temperature, and carbon emissions in OECD and non-OECD countries, with panel data from 2004 to 2019. The results show that the improvement of international competitiveness has reduced the frequency of extreme weather in OECD and non-OECD countries, significantly reducing fossil energy consumption in non-OECD countries and carbon emissions in OECD countries. Sustainable economic growth has significantly reduced fossil energy consumption in OECD countries but increased carbon emissions, especially in non-OECD countries. In addition, in the short term, the improvement of international competitiveness has significantly reduced fossil energy consumption and carbon emissions in OECD and non-OECD countries. In the long term, the improvement of international competitiveness has a greater impact on reducing fossil energy consumption and carbon emissions in non-OECD countries and has a significant impact on reducing the frequency of extreme weather in OECD countries. Moreover, the long-term impacts of sustainable economic growth on fossil energy consumption and carbon emissions are more significant.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3