Conventional and Zero Tillage with Residue Management in Rice–Wheat System in the Indo-Gangetic Plains: Impact on Thermal Sensitivity of Soil Organic Carbon Respiration and Enzyme Activity

Author:

Dutta Asik,Bhattacharyya RanjanORCID,Jiménez-Ballesta RaimundoORCID,Dey Abir,Saha Namita Das,Kumar Sarvendra,Nath Chaitanya PrasadORCID,Prakash Ved,Jatav Surendra SinghORCID,Patra AbhikORCID

Abstract

The impact of global warming on soil carbon (C) mineralization from bulk and aggregated soil in conservation agriculture (CA) is noteworthy to predict the future of C cycle. Therefore, sensitivity of soil C mineralization to temperature was studied from 18 years of a CA experiment under rice–wheat cropping system in the Indo-Gangetic Plains (IGP). The experiment comprised of three tillage systems: zero tillage (ZT), conventional tillage (CT), and strip tillage (ST), each with three levels of residue management: residue removal (NR), residue burning (RB), and residue retention (R). Cumulative carbon mineralization (Ct) in the 0–5 cm soil depth was significantly higher in CT with added residues (CT-R) and ZT with added residues (ZT-R) compared with the CT without residues (CT-NR). It resulted in higher CO2 evolution in CT-R and ZT-R. The plots, having crop residue in both CT and ZT system, had higher (p < 0.05) Van’t-Hoff factor (Q10) and activation energy (Ea) than the residue burning. Notably, micro-aggregates had significantly higher Ea than bulk soil (~14%) and macro-aggregates (~40%). Aggregate-associated C content was higher in ZT compared with CT (p < 0.05). Conventional tillage with residue burning had a reduced glomalin content and β-D-glucosidase activity than that of ZT-R. The ZT-R improved the aggregate-associated C that could sustain the soil biological diversity in the long-run possibly due to higher physical, chemical, and matrix-mediated protection of SOC. Thus, it is advisable to maintain the crop residues on the soil surface in ZT condition (~CA) to cut back on valuable C from soils under IGP and similar agro-ecologies.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3