Assessment of Supply and Demand of Regional Flood Regulation Ecosystem Services and Zoning Management in Response to Flood Disasters: A Case Study of Fujian Delta

Author:

Tian Jian,Zeng Suiping,Zeng Jian,Jiang Feiyang

Abstract

Global climate change has led to flood disasters increasing in terms of frequency and damage caused, which seriously threatens urban and rural security. The flood regulation (FR) service function of the ecosystem plays an important role in mitigating flood disaster risk. Previous studies on flood regulation ecosystem services (FRES) are still lacking in a cross-scale assessment of supply and demand, refined simulation of regional complex hydrology, and application of spatial zoning management. Taking the Fujian Delta as an example, this study established a cross-scale research framework based on the social-ecosystem principle. The SWAT model was used to simulate the regional hydrological runoff and calculate the macro-scale supply of FRES. Taking patches of land as units, a flood risk assessment model was constructed to calculate the micro-scale demand for FRES for urban and rural society. Through a comparison of supply and demand across spatial scales, a zoning management scheme to deal with flood disaster risk was proposed. The results showed that: (1) The supply of FRES differed greatly among the sub-basins, and the sub-basins with low supply were mostly distributed in the lower reaches of Jiulong River and the coastal areas. (2) The demand for FRES was concentrated in high-density urban built-up areas. (3) By comparing the supply and demand of FRES in sub-basin units, 2153 km2 ecological space was identified as the primary ecological protection area, and 914 km2 cultivated land and bare land were identified as the primary ecological restoration area. (4) By comparing the supply and demand of FRES of land patch units, 65.42 km2 of construction land was identified as the primary intervention area. This study provides a decision-making basis for regional flood disaster management from the perspective of FRES.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3