Landslide Displacement Prediction Based on Multivariate LSTM Model

Author:

Duan GonghaoORCID,Su Yangwei,Fu Jie

Abstract

There are many frequent landslide areas in China, which badly affect local people. Since the 1980s, there have been more than 200 landslides in China with a death toll of 30 or more people at a time, economic losses of more than CNY 10 million or significant social impact. Therefore, the study of landslide displacement prediction is very important. The traditional ARIMA and LSTM models are commonly used for forecasting time series data. In our study, a multivariable LSTM landslide displacement prediction model is proposed based on the traditional LSTM model, which integrates rainfall and reservoir water level data. Taking the Baijiabao landslide in the Three Gorges Reservoir area as an example, the data of displacement, rainfall and reservoir water level of monitoring point ZG323 from November 2006 to December 2012 were selected for this study. Our results show that the displacement prediction results of the multivariable LSTM model are more accurate than those of the ARIMA and the univariate LSTM models, and the mean square, root mean square and mean absolute errors are the smallest, which are 0.64223, 0.8014 and 0.50453 mm, respectively. Therefore, the multivariable LSTM model method has higher accuracy and better application prospects in the displacement prediction of the Baijiabao landslide, which can provide a certain reference for the displacement prediction of the same type of landslide.

Funder

Middle-aged and Young Talents Project of the Hubei Provincial Department of Education

The 111 Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference32 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3