Intelligent Fuzzy System to Predict the Wisconsin Breast Cancer Dataset

Author:

Hernández-Julio Yamid Fabián1ORCID,Díaz-Pertuz Leonardo Antonio1,Prieto-Guevara Martha Janeth2ORCID,Barrios-Barrios Mauricio Andrés3ORCID,Nieto-Bernal Wilson4ORCID

Affiliation:

1. Faculty of Economics, Administrative and Accounting Sciences, Universidad del Sinú Elías Bechara Zainúm, Montería 230002, Colombia

2. Departamento de Ciencias Acuícolas–Medicina Veterinaria y Zootecnia (CINPIC), Universidad de Córdoba, Montería 230002, Colombia

3. Systems Engineering Department, Universidad de la Costa, Barranquilla 080001, Colombia

4. Facultad de Ingeniería, Departamento de Ingeniería de Sistemas, Universidad del Norte, Barranquilla 80001, Colombia

Abstract

Decision Support Systems (DSSs) are solutions that serve decision-makers in their decision-making process. For the development of these intelligent systems, two primary components are needed: the knowledge database and the knowledge rule base. The objective of this research work was to implement and validate diverse clinical decision support systems supported by Mamdani-type fuzzy set theory using clustering and dynamic tables. The outcomes were evaluated with other works obtained from the literature to validate the suggested fuzzy systems for categorizing the Wisconsin breast cancer dataset. The fuzzy Inference Systems worked with different input features, according to the studies obtained from the literature. The outcomes confirm that most performance’ metrics in several cases were greater than the achieved results from the literature for the output variable for the different Fuzzy Inference Systems—FIS, demonstrating superior precision.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference34 articles.

1. American Cancer Society (2018). Cancer Facts & Figures 2018, American Cancer Society Inc.

2. Breast Cancer Now (2022, February 03). What are the Signs and Symptoms of Breast Cancer?. Available online: https://breastcancernow.org/about-us/media/facts-statistics#signs-and-symptoms.

3. Hayat, M.A. (2008). Methods of Cancer Diagnosis, Therapy and Prognosis: Breast Carcinoma, Springer Netherlands.

4. A knowledge-based system for breast cancer classification using fuzzy logic method;Nilashi;Telemat. Inform.,2017

5. Gayathri, B.M., and Sumathi, C.P. (2015, January 10–12). Mamdani fuzzy inference system for breast cancer risk detection. Proceedings of the 2015 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3