Spatiotemporal Distribution of Heatwave Hazards in the Chinese Mainland for the Period 1990–2019

Author:

Wu WeiORCID,Liu Qingsheng,Li HeORCID,Huang Chong

Abstract

Heatwaves occur frequently in summer, severely harming the natural environment and human society. While a few long-term spatiotemporal heatwave studies have been conducted in China at the grid scale, their shortcomings involve their discrete distribution and poor spatiotemporal continuity. We used daily data from 691 meteorological stations to obtain torridity index (TI) and heatwave index (HWI) datasets (0.01°) in order to evaluate the spatiotemporal distribution of heatwaves in the Chinese mainland for the period of 1990–2019. The results were as follows: (1) The TI values rose but with fluctuations, with the largest increase occurring in North China in July. The areas with hazard levels of medium and above accounted for 22.16% of the total, mainly in the eastern and southern provinces of China, South Tibet, East and South Xinjiang, and Chongqing. (2) The study areas were divided into four categories according to the spatiotemporal distribution of hazards. The “high hazard and rapidly increasing” and “low hazard and continually increasing” areas accounted for 8.71% and 41.33% of the total, respectively. (3) The “ten furnaces” at the top of the provincial capitals were Zhengzhou, Nanchang, Wuhan, Changsha, Shijiazhuang, Nanjing, Hangzhou, Haikou, Chongqing, and Hefei. While the urbanization level and population aging in the developed areas were further increased, the continuously increasing heatwave hazard should be fully considered.

Funder

the Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference100 articles.

1. IPCC (2021). Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Hotspots of extreme heat under global warming;Li;Clim. Dyn.,2020

3. Spatial patterns of natural hazards mortality in the United States;Borden;Int. J. Public Health,2008

4. Anatomy of Heat Waves and Mortality in Toronto: Lessons for Public Health Protection;Pengelly;Can. J. Public Health.,2007

5. The Role of Humidity in Associations of High Temperature with Mortality: A Multicountry, Multicity Study;Armstrong;Environ. Health Perspect.,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3