Does the Low-Carbon City Pilot Policy Improve the Urban Land Green Use Efficiency?—Investigation Based on Multi-Period Difference-in-Differences Model

Author:

Niu Shuchen1,Luo Xiang1ORCID,Yang Tiantian1,Lin Guodong1,Li Chongming1

Affiliation:

1. College of Public Administration, Central China Normal University, Wuhan 430079, China

Abstract

Improving urban land green use efficiency (ULGUE) is an effective way to increase social, economic, and ecological benefits and achieve regional sustainable development goals. This study takes three batches of low-carbon pilot cities construction as a quasi-natural experiment and investigates the impact of low-carbon pilot construction on ULGUE through the multi-period difference-in-differences method and spatial Dubin difference model (SDM-DID). The results show that (1) from 2006 to 2019, ULGUE in China increased. From the aspect of space, ULGUE in China gradually decreased from west to east, showing an obviously high agglomeration phenomenon in Beijing–Tianjin–Hebei and the Pearl River Delta; (2) after the robustness test, parallel trend test, and endogenous test, it is found that the conclusion that the low-carbon pilot construction can effectively improve ULGUE is still relevant and can indirectly improve ULGUE in the local region through fund allocation, talent gathering, and industrialization; and (3) the national ULGUE has significant positive spatial correlation. The results of the SDM-DID model confirm that the low-carbon pilot policy can produce the significant spatial spillover and drive the common advance of ULGUE in neighboring regions. Therefore, the resources and environmental conditions in each city are supposed to be taken into full consideration theoretically. Furthermore, it is necessary to effectively promote the development of ULGUE by strengthening the linkage of green production factors between different cities, so as to make meaningful contributions to promoting China’s overall green development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3