Simulation Study on the Optimisation of Replenishment of Landscape Water with Reclaimed Water Based on Transparency

Author:

Ao Dong1,Wei Lijie1,Pei Liang23,Liu Chengguo4,Wang Liming1

Affiliation:

1. College of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710048, China

2. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

4. China National Chemical Urban Investment Company Limited, Xi’an 710048, China

Abstract

Water-scarce cities have fewer surface water (SW) resources available for ecological use, causing landscape water to deteriorate due to water shortage and fail to perform their intended landscape functions. As a result, many cities use reclaimed water (RW) to replenish them. However, this could cause concern among the people, as RW usually has higher nutrient concentrations, which may stimulate algae growth and deteriorate the aesthetic senses of the receiving water bodies. In order to assess the feasibility of using RW for this purpose, this study used Xingqing Lake in Northwest China as insight into the effect of RW replenishment on the visual landscape quality of urban landscape water. Water transparency (measured by SD) is used as an intuitive indicator to reflect the comprehensive influence of suspended solids and algae growth on the water’s aesthetic quality. Scenario analyses were carried out after calibrating and validating one-year data in MIKE 3 software with both SD and algae growth calculations, and the results showed that the low concentration of suspended matter in RW could compensate for the decrease in SD due to algal blooms caused by high concentrations of nitrogen and phosphorus, and the effect on SD is especially pronounced under conditions that are not conducive to algal growth, such as good flow conditions and low temperature. In addition, to meet a SD ≥ 70 mm, the total water inflow required can be significantly reduced with the optimal application of RW. It is also indicated that partial or complete utilization of RW to replace SW for replenishing the landscape water could be feasible from the viewpoint of landscape quality, at least for the landscape water investigated in this study. This can provide a method for the improvement to urban water management practices by using RW for replenishment in water-scarce cities.

Funder

Open Project of Key Laboratory in Xinjiang Uygur Autonomous Region of China

Independent Research Project of the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences

Natural Science Foundation Research Program of Shaanxi

Shaanxi Province Key R&D Program Project

Xi’an Polytechnic University transverse research project

Xi’an Polytechnic University Ph.D. Research Startup Fund

Domestic Visiting Scholar Program of Xi’an Polytechnic University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3