Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure

Author:

Zhang Yuanjia1234,Chen Xueru1234,Cheng Leilei1234,Gu Jing1234,Xu Yulin1234

Affiliation:

1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

2. School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China

3. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China

4. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China

Abstract

The transformation of waste plastics into fuels via energy-efficient and low-cost pyrolysis could incentivize better waste plastic management. Here, we report pressure-induced phase transitions in polyethylene, which continue to heat up without additional heat sources, prompting the thermal cracking of plastics into premium fuel products. When the nitrogen initial pressure is increased from 2 to 21 bar, a monotonically increasing peak temperature is observed (from 428.1 °C to 476.7 °C). At 21 bar pressure under different atmosphere conditions, the temperature change driven by high-pressure helium is lower than that driven by nitrogen or argon, indicating that phase transition is related to the interaction between long-chain hydrocarbons and intercalated high-pressure medium layers. In view of the high cost of high-pressure inert gases, the promotion or inhibition effect of low-boiling hydrocarbons (transitioning into the gaseous state with increasing temperature) on phase transition is explored, and a series of light components are used as phase transition initiators to replace high-pressure inert gases to experiment. The reason that the quantitative conversion of polyethylene to high-quality fuel products is realized through the addition of 1-hexene at a set temperature of 340 °C and the initial atmospheric pressure. This discovery provides a method for recycling plastics by low energy pyrolysis. In addition, we envisage recovering some of the light components after plastic pyrolysis as phase change initiators for the next batch of the process. This method is able to reduce the cost of light hydrocarbons or high-pressure gas insertion, reduce heat input, and improve material and energy utilization.

Funder

National Natural Science Foundation of China

Jing Gu Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3