Effects of Bilateral Extracephalic Transcranial Direct Current Stimulation on Lower Limb Kinetics in Countermovement Jumps

Author:

Zhiqiang Zhu1ORCID,Wei Wang2,Yunqi Tang3,Yu Liu2

Affiliation:

1. School of Kinesiology, Shenzhen University, Shenzhen 518000, China

2. School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China

3. College of Art & Design, Shanxi University of Science & Technology, Xi’an 710021, China

Abstract

Objective: Transcranial direct current stimulation (tDCS) is an effective method for improving sports/exercise performance in humans. However, studies examining the effects of tDCS on jumping performance have reported inconsistent findings, and there is a paucity of studies investigating the effects of tDCS on lower limb energy and kinetics in countermovement jumps (CMJs). Thus, we investigated the effects of tDCS on countermovement jump (CMJ) performance and analysed kinetic variations in the ankle, knee, and hip joints. Methods: In total, 15 healthy young participants randomly received anodal or sham bilateral stimulation of the primary motor cortex (M1). The bilateral tDCS (Bi-tDCS) montage used an intensity of 2 mA for a 20 min monophasic continuous current. Jump height, energy, and lower limb kinetic data in CMJs were collected at pre-stimulation (Pre), post-0 min (Post-0), and post-30 min (Post-30) using a motion capture system and two 3D force plates. Jump height, lower extremity energy, and kinetic variables in CMJs were analysed with two-way repeated-measures ANOVA. Results: (1) Compared to the baseline and sham conditions, the jump height increased except that at Post-30 relative to the sham condition, and the total net energy of lower limbs increased at Post-30 relative to the baseline. (2) Compared to the baseline, the ankle positive energy and net energy decreased in the sham condition; Compared to the baseline and values at Post-0, the maximum ankle torque at Post-30 decreased in both stimulation conditions. (3) The maximum knee power increased compared to the baseline and sham conditions. (4) Regardless of time points, the maximum hip torque in the tDCS condition was higher than it was in the sham condition. Conclusion: Bi-tDCS is an effective method for improving jump height by modulating ankle and knee net energy. The net energy improvement of the lower extremities may be due to variation in the kinetic chain resulting from tDCS-enhanced knee exploration force and maximum hip strength in CMJs. The effects of Bi-tDCS gradually decrease.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Educative Reform Project of Shenzhen University

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3