Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods

Author:

Sharma Shruti12,Gupta Yogesh Kumar1,Mishra Abhinava K.3ORCID

Affiliation:

1. Department of Computer Science, Banasthali Vidyapith, Tonk 304022, India

2. School of Technology & Management, SVKM’s Narsee Monji Institute of Management Studies (NMIMS), Indore 452005, India

3. Molecular, Cellular and Developmental Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106, USA

Abstract

The global economy has suffered losses as a result of the COVID-19 epidemic. Accurate and effective predictive models are necessary for the governance and readiness of the healthcare system and its resources and, ultimately, for the prevention of the spread of illness. The primary objective of the project is to build a robust, universal method for predicting COVID-19-positive cases. Collaborators will benefit from this while developing and revising their pandemic response plans. For accurate prediction of the spread of COVID-19, the research recommends an adaptive gradient LSTM model (AGLSTM) using multivariate time series data. RNN, LSTM, LASSO regression, Ada-Boost, Light Gradient Boosting and KNN models are also used in the research, which accurately and reliably predict the course of this unpleasant disease. The proposed technique is evaluated under two different experimental conditions. The former uses case studies from India to validate the methodology, while the latter uses data fusion and transfer-learning techniques to reuse data and models to predict the onset of COVID-19. The model extracts important advanced features that influence the COVID-19 cases using a convolutional neural network and predicts the cases using adaptive LSTM after CNN processes the data. The experiment results show that the output of AGLSTM outperforms with an accuracy of 99.81% and requires only a short time for training and prediction.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3