Metabolic Mechanism of Bacillus sp. LM24 under Abamectin Stress

Author:

Zhu Yueping12,Xie Qilai13,Ye Jinshao4,Wang Ruzhen2,Yin Xudong2,Xie Wenyu2,Li Dehao2

Affiliation:

1. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

2. Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China

3. Guangdong Provincial Key Laboratory of Agricultural and Pural Pullution Abatement and Environmental Safety, Guangzhou 510642, China

4. Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China

Abstract

Abamectin (ABM) has been recently widely used in aquaculture. However, few studies have examined its metabolic mechanism and ecotoxicity in microorganisms. This study investigated the molecular metabolic mechanism and ecotoxicity of Bacillus sp. LM24 (B. sp LM24) under ABM stress using intracellular metabolomics. The differential metabolites most affected by the bacteria were lipids and lipid metabolites. The main significant metabolic pathways of B. sp LM24 in response to ABM stress were glycerolipid; glycine, serine, and threonine; and glycerophospholipid, and sphingolipid. The bacteria improved cell membrane fluidity and maintained cellular activity by enhancing the interconversion pathway of certain phospholipids and sn-3-phosphoglycerol. It obtained more extracellular oxygen and nutrients to adjust the lipid metabolism pathway, mitigate the impact of sugar metabolism, produce acetyl coenzyme A to enter the tricarboxylic acid (TCA) cycle, maintain sufficient anabolic energy, and use some amino acid precursors produced during the TCA cycle to express ABM efflux protein and degradative enzymes. It produced antioxidants, including hydroxyanigorufone, D-erythroascorbic acid 1′-a-D-xylopyranoside, and 3-methylcyclopentadecanone, to alleviate ABM-induced cellular and oxidative damage. However, prolonged stress can cause metabolic disturbances in the metabolic pathways of glycine, serine, threonine, and sphingolipid; reduce acetylcholine production; and increase quinolinic acid synthesis.

Funder

Maoming City Science and Technology Plan Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3