Metabolism of Reactive Oxygen Species in Osteosarcoma and Potential Treatment Applications

Author:

Sun Wei,Wang Bing,Qu Xing-Long,Zheng Bi-Qiang,Huang Wen-Ding,Sun Zheng-Wang,Wang Chun-Meng,Chen Yong

Abstract

Background: The present study was designed to explore the underlying role of hypoxia-inducible factor 1α (HIF-1α) in reactive oxygen species (ROS) formation and apoptosis in osteosarcoma (OS) cells induced by hypoxia. Methods: In OS cells, ROS accumulated and apoptosis increased within 24 h after exposure to low HIF-1α expression levels. A co-expression analysis showed that HIF was positively correlated with Forkhead box class O1 (FoxO1) expression and negatively correlated with CYP-related genes from the National Center for Biotechnology Information’s Gene Expression Omnibus (NCBI GEO) datasets. Hypoxia also considerably increased HIF-1α and FoxO1 expression. Moreover, the promoter region of FoxO1 was directly regulated by HIF-1α. We inhibited HIF-1α via siRNA and found that the ROS accumulation and apoptosis induced by hypoxia in OS cells decreased. In this study, a murine xenograft model of BALB-c nude mice was adopted to test tumour growth and measure the efficacy of 2-ME + As2O3 treatment. Results: Ad interim knockdown of HIF-1α also inhibited manganese-dependent superoxide dismutase (MnSOD), catalase and sestrin 3 (Sesn3) expression in OS cells. Furthermore, hypoxia-induced ROS formation and apoptosis in OS cells were associated with CYP450 protein interference and were ablated by HIF-1α silencing via siRNA. Conclusions: Our data reveal that HIF-1α inhibits ROS accumulation by directly regulating FoxO1 in OS cells, which induces MnSOD, catalase and Sesn3 interference, thus resulting in anti-oxidation effects. The combination of an HIF-1α inhibitor (2-mercaptoethanol,2-ME) and ROS inducer (arsenous oxide, As2O3) can prohibit proliferation and migration and promote apoptosis in MG63 cells in vitro while inhibiting tumour growth in vivo.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3