Microscopic Observation Drug Susceptibility (MODS) Assay: A Convenient Method for Determining Antibiogram of Clinical Isolates of Mycobacterium tuberculosis in Ghana

Author:

Owusu EnidORCID,Newman Mercy Jemima

Abstract

(1) Background: Present methods for drug susceptibility tests (DST) rely on culture methods that are sophisticated and relatively faster, or a slow and cheaper option. These methods frustrate disease control; therefore, there is a need for methods that incorporate key functions of microscopy and culture, with reduced cost burden and sophistry. Thus, the purpose of this study was to identify which, among the most commonly used (in Ghana) methods, can conveniently be used at health centers located in rural areas for effective DST determination of Mycobacterium tuberculosis (MTB). (2) Methods: Mycobacterium tuberculosis isolates were tested for their susceptibility to streptomycin, isoniazid, rifampicin, ethambutol (SIRE), and pyrazinamide by microscopic observation drug susceptibility (MODS) and BACTEC MGIT 960 methods. Evaluations were based on shorter turnaround periods, rapidity, ease of use, cost, etc. A comparative analysis was statistically expressed as kappa values. (3) Results: Endpoints for drug susceptibilities by MODS averaged 13 days (7–32), whilst that for BACTEC MGIT 960 was 10 days with a further 12 days to detect resistance. Therefore, a turnaround period of 22 days was needed for DST by BACTEC MGIT 960, compared to 13 days for MODS. There were differences in correlation levels between the two methods, as determined by their kappa values. (4) Conclusion: The MODS assay was found to be less costly, more user-friendly, and still able to be conveniently used at health centers located in rural areas known to be endemic for TB, particularly in Ghana.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference39 articles.

1. Global Epidemiology of Tuberculosis

2. Tuberculosis: Current situation, challenges and overview of its control programs in India

3. Poverty and Economic Development of Kenya;Mohajan;Int. J. Inf. Technol. Bus. Manag.,2013

4. Global Tuberculosis Report 2019,2019

5. Mycobacterium tuberculosisDrug Resistance, Ghana

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3