Facial Expressions Recognition for Human–Robot Interaction Using Deep Convolutional Neural Networks with Rectified Adam Optimizer

Author:

Melinte Daniel Octavian,Vladareanu Luige

Abstract

The interaction between humans and an NAO robot using deep convolutional neural networks (CNN) is presented in this paper based on an innovative end-to-end pipeline method that applies two optimized CNNs, one for face recognition (FR) and another one for the facial expression recognition (FER) in order to obtain real-time inference speed for the entire process. Two different models for FR are considered, one known to be very accurate, but has low inference speed (faster region-based convolutional neural network), and one that is not as accurate but has high inference speed (single shot detector convolutional neural network). For emotion recognition transfer learning and fine-tuning of three CNN models (VGG, Inception V3 and ResNet) has been used. The overall results show that single shot detector convolutional neural network (SSD CNN) and faster region-based convolutional neural network (Faster R-CNN) models for face detection share almost the same accuracy: 97.8% for Faster R-CNN on PASCAL visual object classes (PASCAL VOCs) evaluation metrics and 97.42% for SSD Inception. In terms of FER, ResNet obtained the highest training accuracy (90.14%), while the visual geometry group (VGG) network had 87% accuracy and Inception V3 reached 81%. The results show improvements over 10% when using two serialized CNN, instead of using only the FER CNN, while the recent optimization model, called rectified adaptive moment optimization (RAdam), lead to a better generalization and accuracy improvement of 3%-4% on each emotion recognition CNN.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3