Addressing Spatial Heterogeneity in the Discrete Generalized Nash Model for Flood Routing

Author:

Yan Bao-Wei,Zou Yi-Xuan,Liu Yu,Mu Ran,Wang Hao,Tang Yi-Wei

Abstract

River flood routing is one of the key components of hydrologic modeling and the topographic heterogeneity of rivers has great effects on it. It is beneficial to take into consideration such spatial heterogeneity, especially for hydrologic routing models. The discrete generalized Nash model (DGNM) based on the Nash cascade model has the potential to address spatial heterogeneity by replacing the equal linear reservoirs into unequal ones. However, it seems impossible to obtain the solution of this complex high order differential equation directly. Alternatively, the strict mathematical derivation is combined with the deeper conceptual interpretation of the DGNM to obtain the heterogeneous DGNM (HDGNM). In this work, the HDGNM is explicitly expressed as a linear combination of the inflows and outflows, whose weight coefficients are calculated by the heterogeneous S curve. Parameters in HDGNM can be obtained in two different ways: optimization by intelligent algorithm or estimation based on physical characteristics, thus available to perform well in both gauged and ungauged basins. The HDGNM expands the application scope, and becomes more applicable, especially in river reaches where the river slopes and cross-sections change greatly. Moreover, most traditional routing models are lumped, whereas the HDGNM can be developed to be semidistributed. The middle Hanjiang River in China is selected as a case study to test the model performance. The results show that the HDGNM outperforms the DGNM in terms of model efficiency and smaller relative errors and can be used also for ungauged basins.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3