Numerical Canal Seepage Loss Evaluation for Different Lining and Crack Techniques in Arid and Semi-Arid Regions: A Case Study of the River Nile, Egypt

Author:

Elkamhawy Elsayed,Zelenakova MartinaORCID,Abd-Elaty Ismail

Abstract

Owing to the potential negative impacts of climatic changes and the grand Ethiopian renaissance dam, water scarcity has become an urgent issue. Therefore, the Egyptian Ministry of Water Resources and Irrigation has started a national project of the lining and rehabilitation of canals, to reduce seepage losses and for efficient water resource management. This study presents a new approach for assessing three different lining and crack techniques for the Ismailia canal, the largest end of the river Nile, Egypt. A 2-D steady state seep/w numerical model was developed for the Ismailia canal section, in the stretch at 28.00–49.00 km. The amount of seepage was significantly dependent on the hydraulic characteristics of the liner material. The extraction from aquifers via wells also had a considerable impact on the seepage rate from the unlined canals; however, a lesser effect was present in the case of lined canals. The concrete liner revealed the highest efficiency, followed by the geomembrane liner, and then the bentonite liner; with almost 99%, 96%, and 54%, respectively, without extraction, and decreasing by 4% for bentonite and geomembrane liners during extraction; however, the concrete lining efficiency did not change considerably. Nevertheless, the efficiency dramatically decreased to 25%, regardless of the lining technique, in the case of deterioration of the liner material. The double effect of both deterioration of the liner material and extraction from the aquifer showed a 16% efficiency, irrespective of the utilized lining technique.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3