Ecological River Health Assessments Using Chemical Parameter Model and the Index of Biological Integrity Model

Author:

HaRa Jang,Mamun Md.,An Kwang-Guk

Abstract

River health is one of the important issues today because of various threats by multiple anthropogenic stressors that have long-term impacts on the physical habitats, biodiversity, ecological functions, and their services. The main objectives of this study is to diagnose the chemical and biological river health in the watershed of Geum River with regard to the chemical regimes (N, P) and fish community using multi-metric chemical pollution index (CPI), and the index of biotic integrity model (IBI), respectively. The empirical models of sestonic chlorophyll, nutrients (N, P), and nutrient ratios of N:P indicated that the watershed, including all sampling sites, was a phosphorus-limited system. Analysis of fish trophic and tolerance guilds showed that the omnivore fish species and tolerant fish species were dominant in the watershed, while the sensitive fish species decreased downstream because of nutrient enrichments (such as TN, TP) and organic matter pollutions (such as BOD, COD). The chemical model of CPI showed that 11 sampling sites were in the fair—good condition, and 8 sites were in poor—very poor condition. Species composition analysis indicated that Zacco platypus was most widely distributed in the watersheds and dominated the fish community. The biological health of the watershed, based on the multimetric IBI model, was in poor condition and was getting worse downstream. The degradation of the river health was matched with the chemical health and showed a decreased abundance of insectivores and sensitive fish species. The outcomes of the river health were supported by principal component analysis (PCA) and cluster analysis (CA) of fish model metrics and the physicochemical parameters. Overall, our study suggests that river health was directly influenced by the chemical pollutions of nutrients and organic matter inputs.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference42 articles.

1. Building a Sustainable and Desirable Economy-in-Society-in-Nature;Costanza,2012

2. Aquatic Ecosystem Services;Limburg,2009

3. Freshwater biodiversity: importance, threats, status and conservation challenges

4. The Sustainable Rivers Audit: assessing river ecosystem health in the Murray - Darling Basin, Australia

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3