Development of a Non-Parametric Stationary Synthetic Rainfall Generator for Use in Hourly Water Resource Simulations

Author:

Yu Ziwen,Miller Stephanie,Montalto Franco,Lall Upmanu

Abstract

This paper presents a new non-parametric, synthetic rainfall generator for use in hourly water resource simulations. Historic continuous precipitation time series are discretized into sequences of dry and wet events separated by an inter-event dry period at least equal to four hours. A first-order Markov Chain model is then used to generate synthetic sequences of alternating wet and dry events. Sequential events in the synthetic series are selected based on couplings of historic wet and dry events, using nearest neighbor and moving window methods. The new generator is used to generate synthetic sequences of rainfall for New York (NY), Syracuse (NY), and Miami (FL) using over 50 years of observations. Monthly precipitation differences (e.g., seasonality) are well represented in the synthetic series generated for all three cities. The synthetic New York results are also shown to reproduce realistic event sequences proved by a deep event-based analysis.

Funder

National Oceanic and Atmospheric Administration

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3