High-Efficiency Continuous-Wave Ti:Sapphire Laser with High-Intensity Pumping Using a Commercially Available Crystal

Author:

Kawato Sakae,Kawashima Toshiki

Abstract

Despite the importance of improving the efficiency of lasers in order to expand their utility range, the improvement of the efficiency of Ti:sapphire lasers has not progressed due to their high crystal losses. Therefore, we improved the efficiency of CW Ti:sapphire lasers by high-intensity pumping, which is one of the most effective methods of suppressing the efficiency reduction due to losses. Using a easily commercially available 0.25 wt.%, figure of merit (FOM) 200 Ti:sapphire crystal, optics and a pump source, we achieved an optical-to-optical conversion efficiency of 32.4% with a slope efficiency of 42.5% at an incident pump power of 5.0 W which corresponds the maximum pumping intensity of 860 kW/cm2. Furthermore, we ensured the reliability of our theoretical analysis by reproducing the experimental results. From this reliable theory, double-pass pumping and increasing the pump power to 25 W resulted in the highest optical-to-optical conversion and slope efficiencies for the incident pump power of 55.9% and 59.6%, respectively, at a high intrinsic residual loss of 4.0%. Even if losses doubled or deviated from the optimum condition for the highest efficiency, the efficiency reduction due to these factors was only a few percent. These results show that with high-intensity pumping, lasers with efficiencies well exceeding half of the quantum limit can be achieved even if all components, including Ti:sapphire crystals, are easily commercially available.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3