A Lightweight Efficient Person Re-Identification Method Based on Multi-Attribute Feature Generation

Author:

Xiong MingfuORCID,Gao ZhiyuORCID,Hu Ruimin,Chen Jia,He Ruhan,Cai Hao,Peng TaoORCID

Abstract

Person re-identification (re-ID) technology has attracted extensive interests in critical applications of daily lives, such as autonomous surveillance systems and intelligent control. However, light-weight and efficient person re-ID solutions are rare because the limited computing resources cannot guarantee accuracy and efficiency in detecting person features, which inevitably results in performance bottleneck in real-time applications. Aiming at this research challenge, this study developed a lightweight framework for generation of the person multi-attribute feature. The framework mainly consists of three sub-networks each conforming to a convolutional neural network architecture: (1) the accessory attribute network (a-ANet) grasps the person ornament information for an accessory descriptor; (2) the body attribute network (b-ANet) captures the person region structure for a body descriptor; and (3) the color attribute network (c-ANet) forms the color descriptor to maintain the consistency of the color of the person(s). Inspired by the human visual processing mechanism, these descriptors (each “descriptor” corresponds to the attribute of an individual person) are integrated via a tree-based feature-selection method to construct a global “feature”, i.e., a multi-attribute descriptor of the person serving as the key to identify the person. Distance learning is then exploited to measure the person similarity for the final person re-identification. Experiments have been performed on four public datasets to evaluate the proposed framework: CUHK-01, CUHK-03, Market-1501, and VIPeR. The results indicate that (1) the multi-attribute feature outperforms most of the existing feature-representation methods by 5–10% at rank@1 in terms of the cumulative matching curve criterion; and (2) the time required for recognition is as low as O(n) for real-time person re-ID applications.

Funder

Natural Science Foundation of Hubei Province

the National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference57 articles.

1. Deep Learning for Person Re-identification: A Survey and Outlook

2. Tensor Representations for Action Recognition

3. ByteTrack: Multi-Object Tracking by Associating Every Detection Box;Zhang;arXiv,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3