Abstract
Features of the tubular type of heat exchanger were examined experimentally in the current study. A rig is fitted with a novel insert as a negative heat transfer increase technique. The core fluid used is air under steady heat flux and a turbulent discharge state (6000 ≤ Re ≤ 19,500) conditions. Two heat transfer augmentation inserts are employed; one is the basket turbulators utilized as a turbulator and placed inside the heat exchanger with a constant pitch ratio (PR = 150 mm), and the other is the basket turbulators together with twisted tape that are installed at the core of the basket turbulators. The measurements illustrated that the Nusselt number (Nu) was found to be higher by about 131.8%, 169.5%, 187.7%, and 206.5% in comparison with the plain heat exchanger for basket turbulators and the combined basket–twisted tape inserts with y/w = 6, 3, and 2, respectively. The highest thermal efficiency factor of the increased tubular heat exchanger is 1.63 times more elevated than that of the simple heat exchanger on average, due to a binary basket-quirky strip for a twisting percentage y/w equal to 2 under steady pumping energy. Further, practical correlations for the Nusselt number, as well as friction characteristics, were established and presented.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献