Reverse Image Search Using Deep Unsupervised Generative Learning and Deep Convolutional Neural Network

Author:

Kiran AqsaORCID,Qureshi Shahzad AhmadORCID,Khan AsifullahORCID,Mahmood SajidORCID,Idrees Muhammad,Saeed Aqsa,Assam Muhammad,Refaai Mohamad Reda A.,Mohamed Abdullah

Abstract

Reverse image search has been a vital and emerging research area of information retrieval. One of the primary research foci of information retrieval is to increase the space and computational efficiency by converting a large image database into an efficiently computed feature database. This paper proposes a novel deep learning-based methodology, which captures channel-wise, low-level details of each image. In the first phase, sparse auto-encoder (SAE), a deep generative model, is applied to RGB channels of each image for unsupervised representational learning. In the second phase, transfer learning is utilized by using VGG-16, a variant of deep convolutional neural network (CNN). The output of SAE combined with the original RGB channel is forwarded to VGG-16, thereby producing a more effective feature database by the ensemble/collaboration of two effective models. The proposed method provides an information rich feature space that is a reduced dimensionality representation of the image database. Experiments are performed on a hybrid dataset that is developed by combining three standard publicly available datasets. The proposed approach has a retrieval accuracy (precision) of 98.46%, without using the metadata of images, by using a cosine similarity measure between the query image and the image database. Additionally, to further validate the proposed methodology’s effectiveness, image quality has been degraded by adding 5% noise (Speckle, Gaussian, and Salt pepper noise types) in the hybrid dataset. Retrieval accuracy has generally been found to be 97% for different variants of noise

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Survey on Content Based Image Retrieval Systems;Misty;Int. J. Innov. Res. Comput. Commun. Eng.,2013

2. Progressive medical image coding using binary wavelet transforms

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3