Evaluation of Survivability of the Automatically Obfuscated Android Malware

Author:

Patel Himanshu,Patel Deep,Ahluwalia Jaspreet,Kapoor Vaishali,Narasimhan Karthik,Singh Harmanpreet,Kaur HarmanjotORCID,Reddy Gadi Harshitha,Peruboina Sai Sushma,Butakov SergeyORCID

Abstract

Malware is a growing threat to all mobile platforms and hundreds of new malicious applications are being detected every day. At the same time, the development of automated software obfuscation techniques allows for the easy production of new malware variants even by attackers with entry-level programming skills. Such obfuscation techniques can evade the signature-based mechanism implemented in current antimalware technology. This paper presents the results of a study that examined how automated obfuscation techniques affect malicious and benign applications by two widely used malware detection approaches, namely static and dynamic analyses. The research explored 5000 samples of malware and benign programs and evaluated the impact of automated obfuscation on Android applications. The experimental results indicated that (1) up to 73% of the reviewed applications “survived” the automated obfuscation; (2) automated obfuscation reduced the detection ratio to 65–85% depending on the obfuscation method used. These findings call for a more active use of advanced malware detection methods in commonly used antivirus platforms.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Mobile Operating System Market Share Worldwidehttps://gs.statcounter.com/os-market-share/mobile/worldwide

2. Different Obfuscation Techniques for Code Protection

3. Sandmark—A Tool for Software Protection Research;Collberg,2003

4. Obfuscating Android Apps: Do You Know Your Choices for Protection?https://proandroiddev.com/obfuscation-is-important-do-you-know-your-options-30b3ef396dfe

5. Obfuscapk: An open-source black-box obfuscation tool for Android apps

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Based Approaches For Android Malware Detection using Hybrid Feature Analysis;2024 6th International Conference on Computing and Informatics (ICCI);2024-03-06

2. A Comprehensive Analysis of Software Obfuscation Techniques;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2023-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3