Investigation on Characterization of Typical Characteristic in Compressor Based on Flat Plate Model

Author:

Zhao Fengtong,Cui Bo,Wu Fei,Jiang Shan,Yang Mingsui,Chen Yuying

Abstract

The acoustic resonance of aero-engine compressors is very harmful, which can lead to the failure of components such as blades. The mechanism of acoustic resonance is very complicated. To solve this problem, characteristics of the noise signal under the abnormal vibration state of the rotor blade are analyzed through the noise measurement in the compressor in the paper. The frequency spectrum characteristics, sound pressure level, and phase relationship of the noise signal corresponding to the abnormal vibration of the rotor blade are captured, and the feature of “frequency locked” which is consistent with the acoustic resonance in the compressor is obtained. Numerical simulation is a better way to study the mechanism of acoustic resonance. Therefore, based on the Parker model, a research method of acoustic resonance characteristics and mechanism based on acoustic analogy is proposed from the solution of the sound-induced in the pipe cavity. The vortex system and sound field characteristics when the acoustic resonance occurs are calculated. The results show that the distribution characteristics of the shedding vortex can be recognized, which are consistent with the experimental results of Welsh when the acoustic resonance occurs. The error of the acoustic resonance frequency from numerical simulation results to experimental is 3.6%. The characteristic of “frequency locked” and Parker β mode of the acoustic resonance is captured. The acoustic analogy method is suitable for the characterization of the acoustic resonance performance and mechanism in the pipeline and in the aeroengine compressor.

Funder

Basic Research Project of Science and Technology Department of Liaoning Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3