A Modified Compact Flexible Vivaldi Antenna Array Design for Microwave Breast Cancer Detection

Author:

Qashlan Ayman M.ORCID,Aldhaheri Rabah W.ORCID,Alharbi Khalid H.

Abstract

In this paper, a compact, flexible Vivaldi antenna is designed, and an array of nine identical antennas of this type is used as a microwave breast imaging model to detect cancerous tumors in the multilayers phantom model presented in this paper. The nine-antenna array is used to measure the backscattering signal of the breast phantom, where one antenna acts as a transmitter and the other eight antennas act as receivers of the scattered signals. Then, the second antenna is used as a transmitter and the other antennas as receivers, and so on till we have gone through all the antennas. These collected backscattered signals are used to reconstruct the image of the breast phantom using software called “Microwave Radar-based Imaging Toolbox (MERIT)”. From the reconstructed image, the tumor inside the breast model can be identified and located. Different tumor sizes in different locations are tested, and it is found that the locations can be determined irrespective of the tumor size. The proposed modified Vivaldi antenna has a very compact size of 25 × 20 × 0.1 mm3 and has a different geometry compared with conventional Vivaldi antennas. The first version of the antenna has two resonant frequencies at 4 and 9.4 GHz, and because we are interested more in the first band, where it gives us sufficient resolution, we have notched the second frequency by etching two slots in the ground plane of the antenna and adding two rectangular parasitic elements on the radiating side of the antenna. This technique is utilized to block the second frequency at 9.4 GHz, and, as a result, the bandwidth of the first resonant frequency is enhanced by 20% compared with the first design bandwidth. The modified antenna is fabricated on Polyimide flexible material 0.1 mm thick with a dielectric constant of 3.5 using a standard PCB manufacturing process. The measured performance of this antenna is compared with the simulated results using the commercially available simulation software Ansoft HFSS, and it is found that the measured results and the simulated results are in good agreement.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3