Dependence of Electric Pulse Mediated Growth Factor Release on the Platelet Rich Plasma Separation Method

Author:

Neculaes Bogdan,Garner Allen L.ORCID,Klopman Steven,Longman Emme A.

Abstract

Platelet rich plasma (PRP) has been explored for multiple clinical applications, including dentistry, orthopedics, sports medicine, diabetic foot ulcers, and cosmetic treatments. Topical applications of PRP typically use thrombin to induce platelet activation, which is accompanied by growth factor release and clotting of the PRP, prior to treatment. Injectable PRP treatments typically use non-activated PRP under the assumption that collagen at the site of the injury mediates platelet activation to ensure growth factor release in vivo. Ex-vivo electrical stimulation of platelets is emerging as a robust, easy to use, instrument-based PRP activation technique to facilitate growth factor release with or without clotting, while providing tunability of growth factor release, clot mechanical properties (when desired), and serotonin release from the dense granules. This paper briefly reviews the key results of the electrical activation of platelets and demonstrates successful growth factor release by electrical ex-vivo stimulation without clotting for three types of PRP separated from whole blood using available commercial kits: Harvest, EmCyte and Eclipse. While these three types of PRP feature a wide range of platelet and red blood cell content compared to whole blood, we demonstrate that pulsed electric fields enable growth factor release for all these biological matrices generated using whole blood from four human donors. These experiments open opportunities for using electrically stimulated PRP with released growth factors without clotting for injectable platelet treatments in relevant clinical applications.

Funder

GE

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference47 articles.

1. The role of platelets in angiogenesis;Klement,2013

2. Platelet-rich plasma: Support for its use in wound healing;Lacci;Yale J. Biol. Med.,2010

3. Autologel Diabetic Foot Ulcer Study Group. A prospective, randomized, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic foot ulcers;Driver;Ostomy Wound Manag.,2006

4. Clinical impact and biomaterial evaluation of autologous platelet gel in cardiac surgery

5. Antibacterial effect of autologous platelet gel enriched with growth factors and other active substances

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3