A Hybrid Deep Residual Network for Efficient Transitional Activity Recognition Based on Wearable Sensors

Author:

Mekruksavanich SakornORCID,Hnoohom NaritORCID,Jitpattanakul AnuchitORCID

Abstract

Numerous learning-based techniques for effective human behavior identification have emerged in recent years. These techniques focus only on fundamental human activities, excluding transitional activities due to their infrequent occurrence and short period. Nevertheless, postural transitions play a critical role in implementing a system for recognizing human activity and cannot be ignored. This study aims to present a hybrid deep residual model for transitional activity recognition utilizing signal data from wearable sensors. The developed model enhances the ResNet model with hybrid Squeeze-and-Excitation (SE) residual blocks combining a Bidirectional Gated Recurrent Unit (BiGRU) to extract deep spatio-temporal features hierarchically, and to distinguish transitional activities efficiently. To evaluate recognition performance, the experiments are conducted on two public benchmark datasets (HAPT and MobiAct v2.0). The proposed hybrid approach achieved classification accuracies of 98.03% and 98.92% for the HAPT and MobiAct v2.0 datasets, respectively. Moreover, the outcomes show that the proposed method is superior to the state-of-the-art methods in terms of overall accuracy. To analyze the improvement, we have investigated the effects of combining SE modules and BiGRUs into the deep residual network. The findings indicates that the SE module is efficient in improving transitional activity recognition.

Funder

University of Phayao

Thailand Science Research and Innovation Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3