Evaluation of Pt Deposition onto Dye-Sensitized NiO Photocathodes for Light-Driven Hydrogen Production

Author:

Droghetti Federico,Benazzi Elisabetta,Boaretto Rita,Natali Mirco

Abstract

The design of photocathodes for the hydrogen evolution reaction (HER), which suitably couple dye-sensitized p-type semiconductors and a hydrogen evolving catalyst (HEC), currently represents an important target in the quest for artificial photosynthesis. In the present manuscript, we report on a systematic evaluation of simple methods for the deposition of Pt metal onto dye-sensitized NiO electrodes. The standard P1 dye was taken as the chromophore of choice and two different NiO substrates were considered. Both potentiostatic and potentiodynamic procedures were evaluated either with or without the inclusion of an additional light bias. Photoelectrochemical characterization of the resulting electrodes in an aqueous solution at pH 4 showed that all the methods tested are effective to attain photocathodes for hydrogen production. The best performances (maximum photocurrent densities of −40 µA·cm−2, IPCE of 0.18%, and ~60% Faradaic yield) were achieved using appreciably fast, light-assisted deposition routes, which are associated with the growth of small Pt islands homogenously distributed on the sensitized NiO.

Funder

University of Ferrara

Italian Ministry of University and Research

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3