Analysis of Hydrogen Filling of 175 Liter Tank for Large-Sized Hydrogen Vehicle

Author:

Kim Moo-SunORCID,Jeon Hong-KyuORCID,Lee Kang-Won,Ryu Joon-HyoungORCID,Choi Sung-Woong

Abstract

Due to the low density of hydrogen gas under ambient temperature and atmospheric pressure conditions, the high-pressure gaseous hydrogen storage method is widely employed. With high-pressure characteristics of hydrogen storage, rigorous safety precautions are required, such as filling of compressed gas in a hydrogen tank to achieve reliable operational solutions. Especially for the large-sized tanks (above 150 L), safety operation of hydrogen storage should be considered. In the present study, the compressed hydrogen gas behavior in a large hydrogen tank of 175 L is investigated for its filling. To validate the numerical approach used in this study, numerical models for the adaptation of the gas and turbulence models are examined. Numerical parametric studies on hydrogen filling for the large hydrogen tank of 175 L are conducted to estimate the hydrogen gas behavior in the hydrogen tank under various conditions of state of charge of pressure and ambient temperature. From the parametric studies, the relationship between the initial SOC pressure condition and the maximum temperature rise of hydrogen gas was shown. That is, the maximum temperature rise increases as the ambient temperature decreases, and the rise increases as the SOC decreases.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3