Abstract
Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to demyelination and associated functional deficits. Though endogenous remyelination exists, it is only partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing relapse rate during the inflammatory phase of MS, there is presently no therapy available which significantly impacts disease progression. Remyelination has been shown to favor neuroprotection, and it is thus of major importance to better understand remyelination mechanisms in order to promote them and hence preserve neurons. A crucial point is how this process is regulated through the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from this research field, which might allow to support remyelination and neuroprotection and thus limit MS progression.
Funder
Fondation pour l'Aide à la Recherche sur la Sclérose en Plaques
Agence Nationale de la Recherche
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献