Overcoming Challenges Associated with Developing Industrial Prognostics and Health Management Solutions
Author:
Affiliation:
1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
2. The Dow Chemical Company, Midland, MI 48674, USA
3. Department of Robotics, University of Michigan, Ann Arbor, MI 48109, USA
Abstract
Funder
The Dow Chemical Company’s University Partner Initiative program
Publisher
MDPI AG
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Link
https://www.mdpi.com/1424-8220/23/8/4009/pdf
Reference41 articles.
1. Prognostics and health management design for rotary machinery systems Reviews, methodology, and applications;Lee;Mech. Syst. Signal Process.,2014
2. A systematic literature review of machine learning methods applied to predictive maintenance;Carvalho;Comput. Ind. Eng.,2019
3. Artificial intelligence for fault diagnosis of rotating machinery: A review;Liu;Mech. Syst. Signal Process.,2018
4. Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey;Zhang;IEEE Syst. J.,2019
5. Prognostics and health management: A review from the perspectives of design, development and decision;Hu;Reliab. Eng. Syst. Saf.,2022
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fault detection and diagnosis of marine diesel engines: A systematic review;Ocean Engineering;2024-02
2. A Study on the Effectiveness of Time Series Similarity Measures for the Comparison of Degradation Curves of Similar Engineering Systems;IEEE Access;2024
3. Adapting the Software Development Life Cycle for Digital Twin Development in Healthcare;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04
4. A digital twin framework for prognostics and health management;Computers in Industry;2023-09
5. An Adaptive, State-Based Framework for Fault Prediction in Rotating Equipment;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3