Utilization of Evolutionary Plant Breeding Increases Stability and Adaptation of Winter Wheat Across Diverse Precipitation Zones

Author:

Merrick Lance F.ORCID,Lyon Steven R.,Balow Kerry A.,Murphy Kevin M.ORCID,Jones Stephen S.,Carter Arron H.ORCID

Abstract

Evolutionary plant breeding (EPB) is a breeding method that was used to create wheat (Triticum aestivum L.)-evolving populations (EP), bi-parental and composite-cross populations (BPPs and CCPs), by using natural selection and bulking of seed to select the most adaptable, diverse population in an environment by increasing the frequency of favorable alleles in a heterogeneous population. This study used seven EPs to evaluate EPB in its ability to increase the performance of agronomic, quality, and disease resistance traits and adaptability across different precipitation zones. The populations were tested in field trials in three diverse locations over 2 years. Least significant differences showed the EPs performance was dependent on their pedigree and were statistically similar and even out-performed some of their respective parents in regards to grain yield, grain protein concentration, and disease resistance. Stability models including Eberhart and Russel’s deviation from Regression (S2di), Shukla’s Stability Variance (σi2), Wricke’s Ecovalance (Wi), and the multivariate Additive Main Effects and Multiplicative Interaction (AMMI) model were used to evaluate the adaptability of the EPs and their parents. The BPPs and CCPs demonstrated significantly greater stability over the parents across precipitation zones, confirming the capacity of genetically diverse EP populations to adapt to different environments.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference56 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3