Impact of Momentary Cessation Voltage Level in Inverter-Based Resources on Increasing the Short Circuit Current

Author:

Choi Namki,Park Bohyun,Cho HwanheeORCID,Lee Byongjun

Abstract

This study analyzed the impact of varying the momentary cessation (MC) voltage level on the short circuit current of inverter-based resources (IBRs). To analyze the impact of the IBR MC function on the short circuit current, this paper proposes an advanced IBR model for fault current calculation to reflect its fault characteristics and a scheme for analyzing the influence of MC on the short circuit current. Based on the proposed methods, the authors conducted case studies using planning data from the Korea Electric Power Corporation (KEPCO). The influence of MC was investigated on the IBRs located at the southwest side of the KEPCO systems by screening the fault currents while varying the MC voltage. This paper demonstrates that the minimum MC voltage level needed for the fault current not to exceed the circuit breaker (CB) capacity can be proposed through analyzing the impact of MC voltage level on the short circuit current. The test results based on the proposed scheme showed that the short circuit current to power systems could not violate CB capacity if IBRs adjusted the MC voltage level higher than the lowest MC voltage level.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference21 articles.

1. Fault Current Contribution From Synchronous Machine and Inverter Based Distributed Generators

2. Control of inverter-based micro-grids

3. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey

4. Impact of Inverter Based Generation on Bulk Power System Dynamics and Short-Circuit Performance http://resourcecenter.ieee-pes.org/pes/product/technical-publications/PES_TR_7-18_0068

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3