Determination of Bio-Based Fertilizer Composition Using Combined NIR and MIR Spectroscopy: A Model Averaging Approach

Author:

Wali KhanORCID,Khan Haris AhmadORCID,Farrell Mark,Henten Eldert J. Van,Meers ErikORCID

Abstract

Application of bio-based fertilizers is considered a practical solution to enhance soil fertility and maintain soil quality. However, the composition of bio-based fertilizers needs to be quantified before their application to the soil. Non-destructive techniques such as near-infrared (NIR) and mid-infrared (MIR) are generally used to quantify the composition of bio-based fertilizers in a speedy and cost-effective manner. However, the prediction performances of these techniques need to be quantified before deployment. With this motive, this study investigates the potential of these techniques to characterize a diverse set of bio-based fertilizers for 25 different properties including nutrients, minerals, heavy metals, pH, and EC. A partial least square model with wavelength selection is employed to estimate each property of interest. Then a model averaging, approach is tested to examine if combining model outcomes of NIR with MIR could improve the prediction performances of these sensors. In total, 17 of the 25 elements could be predicted to have a good performance status using individual spectral methods. Combining model outcomes of NIR with MIR resulted in an improvement, increasing the number of properties that could be predicted from 17 to 21. Most notably the improvement in prediction performance was observed for Cd, Cr, Zn, Al, Ca, Fe, S, Cu, Ec, and Na. It was concluded that the combined use of NIR and MIR spectral methods can be used to monitor the composition of a diverse set of bio-based fertilizers.

Funder

Spitalului Clinic de Urgență pentru Copii Maria Sklodowska Curie

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3