Abstract
Salar de Huasco at the Chilean Altiplano of the Atacama Desert is considered a polyextreme environment, where solar radiation, salinity and aridity are extremely high and occur simultaneously. In this study, a total of 76 bacterial isolates were discovered from soil samples collected at two different sites in the east shoreline of Salar de Huasco, including H0 (base camp next to freshwater stream in the north part) and H6 (saline soils in the south part). All isolated bacteria were preliminarily identified using some of their phenotypic and genotypic data into the genera Streptomyces (86%), Nocardiopsis (9%), Micromonospora (3%), Bacillus (1%), and Pseudomonas (1%). Streptomyces was found dominantly in both sites (H0 = 19 isolates and H6 = 46 isolates), while the other genera were found only in site H0 (11 isolates). Based on the genotypic and phylogenetic analyses using the 16S rRNA gene sequences of all Streptomyces isolates, 18% (12 isolates) revealed <98.7% identity of the gene sequences compared to those in the publicly available databases and were determined as highly possibly novel species. Further studies suggested that many Streptomyces isolates possess the nonribosomal peptide synthetases-coding gene, and some of which could inhibit growth of at least two test microbes (i.e., Gram-positive and Gram-negative bacteria and fungi) and showed also the cytotoxicity against hepatocellular carcinoma and or mouse fibroblast cell lines. The antimicrobial activity and cytotoxicity of these Streptomyces isolates were highly dependent upon the nutrients used for their cultivation. Moreover, the HPLC-UV-MS profiles of metabolites produced by the selected Streptomyces isolates unveiled apparent differences when compared to the public database of existing natural products. With our findings, the polyextreme environments like Salar de Huasco are promising sources for exploring novel and valuable bacteria with pharmaceutical potentials.
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modelling,Ecology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献