Minimally Distorted Adversarial Images with a Step-Adaptive Iterative Fast Gradient Sign Method

Author:

Ding Ning1,Möller Knut1ORCID

Affiliation:

1. Institute of Technical Medicine, Furtwangen University, 78054 Villingen-Schwenningen, Germany

Abstract

The safety and robustness of convolutional neural networks (CNNs) have raised increasing concerns, especially in safety-critical areas, such as medical applications. Although CNNs are efficient in image classification, their predictions are often sensitive to minor, for human observers, invisible modifications of the image. Thus, a modified, corrupted image can be visually equal to the legitimate image for humans but fool the CNN and make a wrong prediction. Such modified images are called adversarial images throughout this paper. A popular method to generate adversarial images is backpropagating the loss gradient to modify the input image. Usually, only the direction of the gradient and a given step size were used to determine the perturbations (FGSM, fast gradient sign method), or the FGSM is applied multiple times to craft stronger perturbations that change the model classification (i-FGSM). On the contrary, if the step size is too large, the minimum perturbation of the image may be missed during the gradient search. To seek exact and minimal input images for a classification change, in this paper, we suggest starting the FGSM with a small step size and adapting the step size with iterations. A few decay algorithms were taken from the literature for comparison with a novel approach based on an index tracking the loss status. In total, three tracking functions were applied for comparison. The experiments show our loss adaptive decay algorithms could find adversaries with more than a 90% success rate while generating fewer perturbations to fool the CNNs.

Funder

German Federal Ministry of Research and Education

Publisher

MDPI AG

Reference32 articles.

1. Endonet: A deep architecture for recognition tasks on laparoscopic videos;Twinanda;IEEE Trans. Med. Imaging,2016

2. Adversarial examples: Attacks and defences on medical deep learning systems;Puttagunta;Multimed. Tools Appl.,2023

3. Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, J., Tsipras, D., Goodfellow, I., Madry, A., and Kurakin, A. (2019). On evaluating adversarial robustness. arXiv.

4. Adversarial examples: Opportunities and challenges;Zhang;IEEE Trans. Neural Netw. Learn. Syst.,2019

5. Balda, E.R., Behboodi, A., and Mathar, R. (2020). Adversarial examples in deep neural networks: An overview. Deep Learning: Algorithms and Applications, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3