The Sensitivity of Multi-spectral Satellite Sensors to Benthic Habitat Change

Author:

Li ,Fabina ,Knapp ,Asner

Abstract

Coral reef ecosystems are under stress due to human-driven climate change and coastal activities. Satellite-based monitoring approaches offer an alternative to traditional field sampling measurements for detecting coral reef composition changes, especially given the advantages in their broad spatial coverage and high temporal frequency. However, the effect of benthic composition changes on water-leaving reflectance remains underexplored. In this study, we examined benthic change detection abilities of four representative satellite sensors: Landsat-8, Sentinel-2, Planet Dove and SkySat. We measured the bottom reflectance of different benthic compositions (live coral, bleached coral, dead coral with algal cover, and sand) in the field and developed an analytical bottom-up radiative transfer model to simulate remote sensing reflectance at the water surface for different compositions at a variety of depths and in varying water clarity conditions. We found that green spectral wavelengths are best for monitoring benthic changes such as coral bleaching. Moreover, we quantified the advantages of high spatial resolution imaging for benthic change detection. Together, our results provide guidance as to the potential use of the latest generation of multi-spectral satellites for monitoring coral reef and other submerged coastal ecosystems.

Funder

John D. and Catherine T. MacArthur Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference78 articles.

1. Accounting for ecosystem goods and services in coastal estuaries;Wilson;Econ. Mark. Value Coasts Estuaries St.,2008

2. Coastal Benthic Habitat Mapping to Support Marine Resource Planning and Management in St. Kitts and Nevis

3. Mapping Shallow Coastal Ecosystems: A Case Study of a Rhode Island Lagoon

4. Impacts of fishing on tropical reef ecosystems;Jennings;Ambio,1996

5. Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3