Spatio-Temporal Mapping of Multi-Satellite Observed Column Atmospheric CO2 Using Precision-Weighted Kriging Method

Author:

He Zhonghua,Lei Liping,Zhang Yuhui,Sheng Mengya,Wu Changjiang,Li Liang,Zeng Zhao-ChengORCID,Welp Lisa R.ORCID

Abstract

Column-averaged dry air mole fraction of atmospheric CO2 (XCO2), obtained by multiple satellite observations since 2003 such as ENVISAT/SCIAMACHY, GOSAT, and OCO-2 satellite, is valuable for understanding the spatio-temporal variations of atmospheric CO2 concentrations which are related to carbon uptake and emissions. In order to construct long-term spatio-temporal continuous XCO2 from multiple satellites with different temporal and spatial periods of observations, we developed a precision-weighted spatio-temporal kriging method for integrating and mapping multi-satellite observed XCO2. The approach integrated XCO2 from different sensors considering differences in vertical sensitivity, overpass time, the field of view, repeat cycle and measurement precision. We produced globally mapped XCO2 (GM-XCO2) with spatial/temporal resolution of 1 × 1 degree every eight days from 2003 to 2016 with corresponding data precision and interpolation uncertainty in each grid. The predicted GM-XCO2 precision improved in most grids compared with conventional spatio-temporal kriging results, especially during the satellites overlapping period (0.3–0.5 ppm). The method showed good reliability with R2 of 0.97 from cross-validation. GM-XCO2 showed good accuracy with a standard deviation of bias from total carbon column observing network (TCCON) measurements of 1.05 ppm. This method has potential applications for integrating and mapping XCO2 or other similar datasets observed from multiple satellite sensors. The resulting GM-XCO2 product may be also used in different carbon cycle research applications with different precision requirements.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. Global Carbon Budget 2018

2. IPCC, 2013: Climate Change 2013: The Physical Science Basis;Stocker,2013

3. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years;Fortunat;Proc. Natl. Acad. Sci. USA,2008

4. Global Carbon Budget 2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3