A Dual-Branch Extraction and Classification Method Under Limited Samples of Hyperspectral Images Based on Deep Learning

Author:

Niu Bingqing,Lan Jinhui,Shao YangORCID,Zhang HuiORCID

Abstract

The convolutional neural network (CNN) has been gradually applied to the hyperspectral images (HSIs) classification, but the lack of training samples caused by the difficulty of HSIs sample marking and ignoring of correlation between spatial and spectral information seriously restrict the HSIs classification accuracy. In an attempt to solve these problems, this paper proposes a dual-branch extraction and classification method under limited samples of hyperspectral images based on deep learning (DBECM). At first, a sample augmentation method based on local and global constraints in this model is designed to augment the limited training samples and balance the number of different class samples. Then spatial-spectral features are simultaneously extracted by the dual-branch spatial-spectral feature extraction method, which improves the utilization of HSIs data information. Finally, the extracted spatial-spectral feature fusion and classification are integrated into a unified network. The experimental results of two typical datasets show that the DBECM proposed in this paper has certain competitive advantages in classification accuracy compared with other public HSIs classification methods, especially in the Indian pines dataset. The parameters of the overall accuracy (OA), average accuracy (AA), and Kappa of the method proposed in this paper are at least 4.7%, 5.7%, and 5% higher than the existing methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3