Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China

Author:

Wang Yuchen,Zhang Yu,Ding Nan,Qin Kai,Yang Xiaoyan

Abstract

As an important energy absorption process in the Earth’s surface energy balance, evapotranspiration (ET) from vegetation and bare soil plays an important role in regulating the environmental temperatures. However, little research has been done to explore the cooling effect of ET on the urban heat island (UHI) due to the lack of appropriate remote-sensing-based estimation models for complex urban surface. Here, we apply the modified remote sensing Penman–Monteith (RS-PM) model (also known as the urban RS-PM model), which has provided a new regional ET estimation method with the better accuracy for the urban complex underlying surface. Focusing on the city of Xuzhou in China, ET and land surface temperature (LST) were inversed by using 10 Landsat 8 images during 2014–2018. The impact of ET on LST was then analyzed and quantified through statistical and spatial analyses. The results indicate that: (1) The alleviating effect of ET on the UHI was stronger during the warmest months of the year (May–October) but not during the colder months (November–March); (2) ET had the most significant alleviating effect on the UHI effect in those regions with the highest ET intensities; and (3) in regions with high ET intensities and their surrounding areas (within a radius of 150 m), variation in ET was a key factor for UHI regulation; a 10 W·m−2 increase in ET equated to 0.56 K decrease in LST. These findings provide a new perspective for the improvement of urban thermal comfort, which can be applied to urban management, planning, and natural design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3