High-Efficiency Mixotrophic Denitrification for Nitrate Removal in High-Sulfate Wastewater Using UASB Reactor

Author:

Wang Yuqi12,Jie Mengrui2,Zhang Huining2ORCID,Yang Jia3,Xu Meijuan2

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. School of Civil Engineering and Architecture, NingboTech University, Ningbo 315100, China

3. Ninghai Society of Environmental Science and Technology, Ningbo 315600, China

Abstract

The efficient removal of nitrate from industrial wastewater containing high concentrations of both sulfate and nitrate presents a major challenge in the field of water treatment. In this study, we investigated the use of an Upflow Anaerobic Sludge Blanket (UASB) reactor for the removal of nitrate from wastewater by gradually increasing the sulfate concentration (ranging from 1 g/L to 10 g/L) and the NO3−-N concentration (ranging from 30 mg/L to 300 mg/L). Through this approach, the activated sludge was successfully acclimated to tolerate high-sulfate conditions. The results demonstrated a remarkable NO3−-N removal capacity of 288 mg/L·d in wastewater with a high sulfate concentration of 10 g/L, leading to a nitrate removal efficiency exceeding 96.0%. The analysis of sulfate and sulfide concentrations, as well as the characterization of the microbial community, revealed the occurrence of autotrophic and heterotrophic denitrification processes in the reaction system. The autotrophic denitrifying bacteria found were Raoultella and Shinella, while the heterotrophic denitrifying bacteria included Klebsiella, Simplicispira, and Thauera. The organic carbon sources were found to be a critical factor influencing the denitrification performance of the system. Furthermore, the effects of different chemical oxygen demand (COD)/SO42− ratios (0.3, 0.5, and 1) were examined in wastewater containing a sulfate concentration of 10 g/L and a NO3−-N concentration of 300 mg/L. The results showed that increasing the COD/SO42− ratio enhanced the removal rate of NO3−-N, maintaining it above 98.0% when COD/SO42− was 1. Additionally, the enhancement of the sulfate reduction reaction in the system was observed, and the enrichment of heterotrophic microorganisms such as Megasphaera, Lactobacillus, and Buttiauxella was observed.

Funder

Ningbo Science and Technology Bureau Key Research and Development Plan

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3