Optimization of Multi-Reservoir Flood Control Operating Rules: A Case Study for the Chaobai River Basin in China

Author:

Wan Wenhua1ORCID,Liu Yueyi1,Zheng Hang1,Zhao Jianshi2ORCID,Zhao Fei3,Lu Yajing3

Affiliation:

1. School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China

2. State Key Laboratory of Hydro-Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China

3. Beijing Water Science and Technology Institute, Beijing 100048, China

Abstract

Reservoirs are susceptible to interference from inter-basin water transfer projects intended to relieve serious water shortages. The Central Route of the South-to-North Water Division Project in China has altered the hydrological conditions and water storage status of the terminal reservoir, the Miyun Reservoir, thereby affecting the flood control reliability in the Chaobai River Basin. In this study, a dual-objective five-reservoir operation model was developed, in which reservoir releases are obtained through piecewise linear operating rules. The model considers the flooding risks both downstream of the basin and in the Miyun reservoir area. A parameterization-simulation-optimization approach was employed to obtain the Pareto-optimal front, providing decision-makers with a list of optimal rule parameters to select and match their own risk preferences. All optimized rules could ensure safe operation during the designed floods to be expected once (or more than once) every thousand years. In contrast, the current flood operation schemes largely ignore the water transfer between basins but primarily concentrate on storing water from floods. Thus, the Miyun Reservoir, whose design return period is 1000 years, can easily become filled during a 100-year flood, impeding the system’s flood control capacity. Compared to the operating rule optimized in this study, the current schemes result in a 10.5% higher upstream inundation loss and an unsatisfactory 17 million CNY of equivalent water transfer loss.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3