Anomaly Detection for Skin Lesion Images Using Convolutional Neural Network and Injection of Handcrafted Features: A Method That Bypasses the Preprocessing of Dermoscopic Images

Author:

Grignaffini Flavia1,Troiano Maurizio1,Barbuto Francesco1,Simeoni Patrizio2,Mangini Fabio1ORCID,D’Andrea Gabriele3,Piazzo Lorenzo1ORCID,Cantisani Carmen4,Musolff Noah4,Ricciuti Costantino3,Frezza Fabrizio1ORCID

Affiliation:

1. Department of Information Engineering, Electronics and Telecommunications (DIET), “La Sapienza” University of Rome, 00184 Rome, Italy

2. National Transport Authority (NTA), D02WT20 Dublin, Ireland

3. Department of Statistical Sciences, “La Sapienza” University of Rome, 00185 Rome, Italy

4. Dermatology Unit, Department of Clinical Internal Anesthesiologic Cardiovascular Sciences, “La Sapienza” University of Rome, 00185 Rome, Italy

Abstract

Skin cancer (SC) is one of the most common cancers in the world and is a leading cause of death in humans. Melanoma (M) is the most aggressive form of skin cancer and has an increasing incidence rate. Early and accurate diagnosis of M is critical to increase patient survival rates; however, its clinical evaluation is limited by the long timelines, variety of interpretations, and difficulty in distinguishing it from nevi (N) because of striking similarities. To overcome these problems and to support dermatologists, several machine-learning (ML) and deep-learning (DL) approaches have been developed. In the proposed work, melanoma detection, understood as an anomaly detection task with respect to the normal condition consisting of nevi, is performed with the help of a convolutional neural network (CNN) along with the handcrafted texture features of the dermoscopic images as additional input in the training phase. The aim is to evaluate whether the preprocessing and segmentation steps of dermoscopic images can be bypassed while maintaining high classification performance. Network training is performed on the ISIC2018 and ISIC2019 datasets, from which only melanomas and nevi are considered. The proposed network is compared with the most widely used pre-trained networks in the field of dermatology and shows better results in terms of classification and computational cost. It is also tested on the ISIC2016 dataset to provide a comparison with the literature: it achieves high performance in terms of accuracy, sensitivity, and specificity.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3